A KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces

نویسندگان

  • Jiansheng Geng
  • Jiangong You
چکیده

In this paper, we give a KAM theorem for a class of infinite dimensional nearly integrable Hamiltonian systems. The theorem can be applied to some Hamiltonian partial differential equations in higher dimensional spaces with periodic boundary conditions to construct linearly stable quasi–periodic solutions and its local Birkhoff normal form. The applications to the higher dimensional beam equations and the higher dimensional Schrödinger equations with nonlocal smooth nonlinearity are also given in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A KAM Theorem for Hamiltonian Partial Differential Equations with Unbounded Perturbations

We establish an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field, which could be applied to a large class of Hamiltonian PDEs containing the derivative ∂x in the perturbation. Especially, in this range of application lie a class of derivative nonlinear Schrödinger equations with Dirichlet boundary conditions and perturbed Benjamin-Ono equation with peri...

متن کامل

Symmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation

‎In this paper Lie point symmetries‎, ‎Hamiltonian equations and conservation‎ ‎laws of general three-dimensional anisotropic non-linear sourceless heat transfer‎ ‎equation are investigated‎. ‎First of all Lie symmetries are obtained by using the general method‎ based on invariance condition of a system of differential equations under a pro‎longed vector field‎. ‎Then the structure of symmetry ...

متن کامل

Exponential Averaging for Hamiltonian Evolution Equations

We derive estimates on the magnitude of non-adiabatic interaction between a Hamiltonian partial differential equation and a high-frequency nonlinear oscillator. Assuming spatial analyticity of the initial conditions, we show that the dynamics can be transformed to the uncoupled dynamics of an infinite-dimensional Hamiltonian system and an anharmonic oscillator, up to coupling terms which are ex...

متن کامل

Degenerate KAM theory for partial differential equations

Article history: Received 1 August 2010 Available online 16 November 2010 MSC: 37K55 35L05 This paper deals with degenerate KAM theory for lower dimensional elliptic tori of infinite dimensional Hamiltonian systems, depending on one parameter only. We assume that the linear frequencies are analytic functions of the parameter, satisfy a weak non-degeneracy condition of Rüssmann type and an asymp...

متن کامل

KAM theory for the Hamiltonian derivative wave equation

We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations. 2000AMS subject classification: 37K55, 35L05.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006